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Abstract

Several classes of mesh motion algorithms are presented for the remap phase of unstructured
mesh ALE codes. The methods range from local shape optimization procedures to more complex

variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary
for the Kull code.

1 Local shape optimization

Three different weighting schemes are described in this section to optimize the mesh configuration
based on simple locally computed geometric shape functions. The first scheme attempts to adjust
the vertex angles formed by the tetrahedral sub-zonal side elements to an optimal equi-angular
state. The vertex solid angle (6;) is defined as the surface area of the tetrahedral side element T
attached to the vertex ¢; and formed by projecting each point on the face not containing ¢; to the
unit sphere centered on ¢;. An explicit formula for 8y at ¢y can be written in terms of the volume
and edgelengths of T (Liu and Joe 1994)

. 12V
sin (6y/2) = , (1.1)
\/H1gi§j§3(€0i + Loj + i) (Loi + Loj — Li5)
where the volume is computed from the coordinates of each of the four vertices Z; at ¢;
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and 4;; = IE;J] are the edgelengths between vertices ¢; and t; with £;; = |¢; — t;|. The tetrahedron
edges attached to tg are defined by the vectors connecting ¢y to the face centers (i1, £51), the zone

center (t2, £p2), and the opposite nodes (t3, £g53) of each of the M sub-zonal side elements of the
cell. The complete list of edges forming the tetrahedron are

loy = Zp— o, boo = Tz — o, bo3 = N1 — To, (1.3)
byg = Iz —-2Ip, {13 = IN1 — TP, loy = TN1 ~ Zz. (1.4)
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By assigning an equilibrium angle appropriate for a regular tetrahedron, 6 =3cos™}(1/3) — 7, a
weight factor is defined for the mth side element as Wy, = 8 — 8 p,, to drive the nodal motion
between pseudo-times ¢* and t"*! as

Z%:l (f’;‘,m + '/f%,m + i’,’]n\fl,m - 35%1)Wm

’ 3 M, Wl
In 2D,
0, + 02, — 13
0 — cog—l [tz s ~ta L6
0T e ( Yozlos )’ (1.6)
67y = Z%:l (Zz,m + Enim — 2%0) Wi @
22%:1 Wm ’

and Wy, = /3 — 0y.m.

A similar mesh calculation can be performed using the radius (or aspect) ratio defined by
p = ri/7re, where r; and r. are the inscribed and circumscribed radii respectively. A convenient
formula for computing p is

~ 72 V2
S YigsivlarBEarB-Naty-BB+r-a)

where o = £y14a3, B = lo2f13, and v = €y3f19 are products of the lengths of opposite edges of T,
and s; are the areas of the four faces

I (1.8)

1
i =7 \/(ai +b; + ci)(ai + b — ci)(ai + ¢ — b)) (bi + ¢ — ai), (1.9)

with magnitudes of the three unique planar edge lengths making up the faces a;, b; and ¢;. Setting
W = pm in (1.5) effectively drives the mesh to equal aspect ratio zoning. In 2D, the corresponding
shape parameter can be written

Z bos — £ - -
o = o2+ Los — bo3)(fo3 + Los — £oa) (Y3 + Loz — Lo3) (1.10)
Loolyzlos

A more generic and fundamental representation of shape parameters is afforded by composing
the Jacobian matrix of all node positions attached directly to ¢y (Freitag and Knupp 1999). Defining
0Zm k = Tk —To as the difference between the position of the kth neighbor node of the mth element
and the position of the center node, the Jacobian matrix of the mth element is written in terms of
the relative vector components

0Tm1 O0Tm2 O0Tm3
Ay = (&Um,l 5ym,‘2 5ym,3 ) . (1-11)
5zm,1 5Zm,2 6zm,3

For 3D hexagonal cells or tetrahedral sub-zonal elements, 1 < k < 3, and if an element is inverted
or tangled, the determinant of the Jacobian matrix is Det|A4,,| < 0. Defining the Frobenius norm

4] = [trace (47 4)]", (1.12)
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a variety of smoothness objective shape functions f(A,,(%)) can be defined as criteria or weights
for optimizing the mesh shape: f(A4,(%)) = |Am|?, Det|An|?, Det|An|?| A2, |Am|?/Det|Aml,
interpreted as the sum of the square of the attached edge-lengths, the local cell volume, the sum
of attached face areas squared, and the aspect ratio, respectively. The displacement vector in this
case is defined by

§Fq = 1 ul ( 8177716817777» + Eg?,mggzm + gg?:,meg?»,m) W (1 13)
0= > , )
Yo Wil €1,m + Loom + Lo3.m

where W, = f(A,(%)).

2 Tetrahedral finite element smoothing

The focus in this section is on Laplacian smoothing on a tetrahedral finite element mesh which
satisfies the condition of extremum in the variation integral

I= -;- / AW (2)Vif Vi, (2.14)

where f is associated with the coordinates (z, y, z), and W(z) is an arbitrary weight function.
Since polyhedral cells can be constructed out of more basic tetrahedral element, this approach is
also relevant for more arbitrary polyhedral meshes.

The finite element approach presented here is based on the shape function of the sub-zonal
tetrahedron (or triangle in 2D) side element composing of two nodes along an edge of the cell, one
of the face centers, and the zone center. Using the notation (¢, 7, ¢) — (r, s, t) for the generalized
coordinates, the shape functions for an orthogonal tetrahedral element is defined by

Ni=r, Np=s, Ny=t, and Ny=1-r—s-1, (2.15)

where node NN, corresponds to the pivotal node ¢y in the notation of section §1. Using the notation
OsN = ON/0s, the shape function gradients take the form

Opr Ny Opr + OsN, Ops + O, N, Ot
VNa B ( ) ’

OrNo Oyr + 03Ny Oys + O0;Ny Oyt (2.16)
Ny 8,1 + OsNy 8,8 + O,N, 8,t
which reduces to
. Oyt 1 Osy Opz — Oy Osz 1 24,
VNi=|0yr | == 020z — Oizdsz | = 7 0 , (2.17)
0,7 Osz Oy — Oz Osy 0
. I 1 Oy Orz — Ory Osz 1 0
VNo= | Oys | = i 01z Opx — Opz Oz | = i 245 |, (2.18)
0,3 Oz Ory — Orx By 0
. Oyt 1 Ory 05z — Osy Orz 1
VN3 = | Oyt | = i Opz Osz — Oz Opz | = 7 0 , (2.19)
a,t O,z Oy — Osz Ory 2A3



and
- " 9 (A1
VNy =—(VN; +VN; + VN;) = —7 (A2> . (2.20)
A; are the areas of the opposite face (to the node 4) triangles
1 Lz oy
A= -2— Det 1 T2 Y2 5 (221)
1 z3 y3

and J is the determinant of the Jacobian matrix related to the tetrahedral volume V

LD (B dybe) G (0ude yiny e (B0 B0V g,
C Or\dsot otds) Bs\Btor orot) 9t \ords dsor) '
Equations (2.17) - (2.19) can be written collectively in compact form as
. 24, A,
Ny = =_— 2.23
v 7 T3y (2.23)

where A, is inward pointing (towards the cell center).

Since an arbitrary function f is represented in a finite element approach as f = ¥, foNa, where
Jo and N, are the values of f and the shape function at the ath grid point, the gradient of f can
be expanded as

Vi=>"faVN,. (2.24)

Associating f with the coordinates f = (z, v, z) yields for the coordinates

f =z=rzit+szottaz+(1—-r—s—t)zy, (2.25)
' Sy=ryp+sypttyp+(1-—r—s—ty, (2.26)
' =z=rzi+sznttu+(1—1r—s5—1)z. (2.27)

Substituting (2.24) into the variational integral (2.14), yields
1 ; 1
=5 fals [ d*WViNT Ny = 23 fafshes, (2.28)
0‘7)6 a,ﬁ

where

Ags = / AW V;NaViNy = / da:34WA Ay, (2.29)
is the matrix composed of the inner vector products of opposite face areas (2.23). However, one
drawback of this form is the tendency to drive the mesh to a state of orthogonal faces since
A, Aﬂ 0 represents the extremum. A particular manifestation of this problem appears in
spherically converging meshes. In this case the mesh tends to concentrate radially towards the
middle domains at which r ~ Ar/Af, where the arc length s = rAf is comparable to the radial
distance Ar between nodes, and the side tetrahedral elements are naturally formed with minimal
aspect ratios. This can be compensated for to some extent by adding an additional term to (2.28)
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to drive the system to a competing equilibrium state. This is acheived easily by considering the
sum of the square of the edgelengths, and rewriting (2.28) as

Zfafﬂ / dz®WV;No VPN + ZWEQ Vs, (2.30)
7ﬂ

where ¢ is a coupling constant, £2 are the edgelengths squared, and the volume V1/3 is introduced
for dimensional reasons. A useful identity

D=2 e~ Vs, (2.31)
o

where 62 is the Kronecker symbol, can be substituted in (2.30) to yield
1
Zfafﬁ; ( S Aa A+ WV Vb0 — 1)) = 3 Y Fafpdas, (2.32)
a,f

where now AW
Aaﬁ = /dmgjz—/i’a . A’/H + 6WV1/3(45aﬁ — 1), (233)

and for a single element, ignoring overall constants

W, o
Aap = = (Ao A + Vi3 (45,5 - 1)) . (2.34)

A similar calculation can be carried out in two dimensions to yield

W (S-S5 +eA (300 — 1)), (2.35)

Aop =

where S, are the inward pointing opposite edge lengths, and A is the area of the triangular cell.
Forcing the variational integral to extremum

@“Zfﬁ op =0, (2.36)

and introducing Wﬂ for anisotropic weighting yields

1
{0747 ,B#a
Wt P
B ‘m§ (Ao &y + V¥ (405 = 1) f5. (2:38)
o B#a

for the contribution from a single element £ to the modified coordinates of the ath node.



3 Genexialized Laplacian smoothing on polyhedral meshes

The variational approach discussed in section §2 is extended here to a weighted Winslow-Crowley
(Crowley 1962; Winslow 1963) form on a single finite element and generalized to arbitrary polyhe-
drals. Using a general coordinate transformation between reference coordinates &; and Cartesian
coordinates z; with z; = f;(¢;), the variation integral (2.14) becomes (Tipton 1994)

1 _
1= / AW (2) Vi fVif (3.39)
g ¢, 0f 86 9f
= 5 [arew % 5o 5 B Bt (3.40)
= Ll 197 9f
= 5 [atTewe >0 S5y (3.41)
where the coordinate transformation is implicit in conventional tensor notation
_ 0% 0¢;
=1 =7
(gi) 7" = ; s (3.42)
Variation of (3.41), 61 =0, gives
3] _10f
— [ IW(gij) = | =0, 3.43

and neglecting metric derivatives results in the Winslow-Crowley formula
0 (W of
JHgii) t— | —== | =0, 3.44
%: 9" g, (J3€j> (344

assuming also that the weight factor is set to the Jacobian W = J.
In finite element form, the action is written

1 : 1
1=53 fals / A5 W (2)VilNaV'Ng = 5 Y fafsAap, (3.45)
a.f o8
where the diffusion matrix is defined
- N
Ap = [(EWEVNT N, = [ a2 I@W @) Do) BT, (1.46)
1,3 t J
and the new coordinates are computed by
1
fa = "A—’ Z Aaﬁfﬁ7 . (347)

% fota

as in §2.
The difference between the tetrahedral results of the previous section and those discussed here
lies primarily in the definition of the gradients used in (3.46). The notion of generalized coordinate
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transformations is applicable locally to a single (quadrilateral or hexagonal) element, though it may
not necessarily be parametrically continuous across different elements. For a single element, the
metric tensor representing the coordinate transformation is written as

0&; O¢;
ATy LRV 3.48
(9:5) ; Oxy, Oz ( )
1 922933 — g23923 13923 — 912833 912023 — 922913
= 73 | 913928 — 912933 911933 — 913913 G13912 — gugs2 | (3.49)
912923 — 922913 913912 — 911932  G11922 — 912912
where
Oz; Oz
o= — 3.50
%= 2 58, o (8:50
is the symmetric inverse of (3.49), with independent components
Oz 0z Oyo 0z 0z
g = o490 TEOE (3.51)
9§05 9Loc 0L o¢

Oz 0x Oydy 0z0z
_ 9zdz  Oydy 020z 52
@83: Oyldy 0z0z

% = gEar T oagac  aeor 59
_ 0z0x Oydy 0z0z
% = Bnon * onon " onon .
_ 0z0x Oydy O0z0z
= Bpac T amac T amac (359
_ 0z0x Oyody 0z0z
% = acac Tacac tacar (3.56)
and Jacobian determinant
SACT L TN LT A
T 9¢E\aac Ao on \o¢a¢ O¢o¢ o¢ \0¢on 0Onodt)’ ’

The Winslow-Crowley formula is readily generalized to an individual element and to account
for metric differences across elements by including the metric derivatives and discretizing the full
variational result (3.43) in place of (3.44). Discretizing (3.43), summing over all elements £, and
treating the weight and metric variations in an explicit first order fashion gives

r ¢ ¢

Nfije = ZE: _(gl—llJW)i+1/2,j,k firrin + (gl_llJW)z‘—l/Q,j,k fi—l,j,k]
Ve ¢ _ ¢

" Z; -(9221JW)i,j+1/2,k Togere + (9221JW)i,j—1/2,k fivj".l”“]
r ¢ ¢

+ ; _(9—31JW)i,j,k+1/2 fijrer + (g?’—f‘lJW)i,j,k_1/2 fi,j,k—l]

£

~1 . . -1 ¢
; [(912 JW)i+1/2,j+1/2,k Firvgiie + (912 JW)i—1/2,j—1/2,k

fz'—l,j—l,k}

W



B %; :(galjw)f—kl/zj—l/zk firrg-1k + ( 21JW)f 1/2,5+1/2,k fi’l’j“Ll’k]
+ %ze: L(g—gljw);l/zj’kﬂﬂ fit1 k41 + (g 31JW)f 2k 1/2 1,4k 1]
- %; :(9_31JW):+1/2,J',1€_1/2 frerghr + (93 31JW)5 gk I Jkﬂ]
+ —jizg: :(g'_?’lJW>:,j+1/2,k+1/2 Fugrrpn (g 31JW)f,J 1/2,k—1/2 fi’j_l’k_l}
B i%: {(92—31 W)i,j—1/2,k+1/2 fig-tierr + ( 31JW)Z,3+1/2k 1/2 fi’j“’k’lbﬁg)

for the coordinates of the central pivotal node. Also,

N

> [(571_11 IW)ii1yzk + (917 IW)i 125k + (QQ—QIJW)f,jH/z,k]
7

+ S TWE gk + (05 TV, g + (953 TW)E o] (3.59)
£

is the normalization factor, and the spatial indices on the terms (gi“le W)¢ indicate the edge align-
ment within element £ from which the metric components, Jacobian, and weight functions are
derived.

The physical interpretation of the components of g;; implicit in the definition of (gz-_jl) is under-
stood as scalar products of different permutations of any two edge vectors centered on an arbitrary
pivotal node. In particular, g;; on node «a is associated with the scalar product of the two edge-
lengths denoted by (4, j) belonging to the same discrete element ¢, g;; = 0Z(;) - 6%(;). With this
notation, the tensor components of (3.49) are written in the form

Pla)™ = 6o satysaloaly — (6o2saly)’, (3.60)
Plo)™t = saVsalyxl 6xly) — 5062l 621 6l (3.61)
T (gi3) ™t = o) 0uly a0t 6aty — 6210 6l 50t 6l (3.62)
)™ = saVesksaPoaly — (500 saly)”, (3.63)
T ges) ™ = saVaaly 62l bty — 0l 6l 02D 0l (3.64)
J2(gs3)"! = 5:c,§1)5:c(1)5x§2>5:cl(2)—(M,(j)ax@))z, (3.65)

with an implied summation convention over identical covariant and contravariant indices.
Although derived assuming hexagonally shaped cells, the identification of the metric tensor
with local edge products is easily extended to arbitrary polyhedrals by accounting for all possible
permutations of edge pairings. For example, considering differential changes in nodal positions (as
apposed to absolute coordinate positions), the node-centered net displacement function between
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and the various weights appearing in (3.66) - (3.68) are tied to local cell attributes. In particular,
W = V¥ EY, where V is the cell (or tetrabedral sub-element) volume, £ is the edgelength, and
w, and we are arbitrary exponents.

4 Post-motion filters

Several constraints are placed on the final mesh displacement vector once it’s computed by any
of the methods described in sections §1 - 3. First, to prevent excessive diffusion errors in the ale
remap cycle, the mesh motion is rescaled in amplitude to small relative changes in cell dimensions
as 0%y — €dTp with

. CrLAL Cy ( léfo| — 0% min ))
= 1 _— 4.7
€ mm( IR FEAREI AL max | 0, 1670 = 32mml) ) (4.70)

where AL is a characteristic length scale, Cr, and Cy are constants with values less than unity con-
straining the relative length and volume changes respectively, and dz,y,;, is 2 minimum displacement
threshold below which any computed mesh motion is neglected.

Second, the displacement vector may be rescaled to the fluid velocity to prevent unnecessary
mesh movement in domains which have not become dynamically active. This is achieved by setting

k1 |Uf] At)

6Ty — 0%g min (1, L
|(5(L‘0|

(4.71)
where & is an arbitrary scale constant, At the physical Lagrange cycle timestep, and ¥ the fluid
velocity.

Finally, additional node and zone coupling can be achieved by applying local filters and effec-
tively generating smoother meshes by extending the Laplacian stencil to larger domains of influence,
and suppressing further any potential hourglassing modes. For example, the displacement vector
may be modified to the form

§Fg > 6Fg + kQ(éfO,(wg — 55}'0), (4.72)

where k; is a constant less than or equal to unity. 6% 4.4 is an extended average nodal mesh velocity
computed either as a simple average of all node velocities directly connected to Zp by cell edges,
or as a zone-centered extrapolated mean field. In the latter case, a zone-centered velocity 0% 7 is
computed in all zones attached to node 0 by averaging it’s nearest nodal velocities; node-centered
gradients of each of the zone-centered field components V N(Sa:gz,)z are constructed and averaged back
to the zone centers; 0% qy¢ is finally defined by extrapolating the nearest zone-centered velocities
to node 0 using a first order Taylor’s series to the form

| Mo | g (VWbehy VDdshy sy (o) —al,
oy = g 22 [0+ s 3 | Waall V08 S0l || o2 ol
0,2 my=1 N.Z V(1)53:(()3)2 v(2)5$83)z V%B)(S.’E(()B)Z .’13(()3)—37(()3)
n 3 n 7 ’ Mz
(4.73)

Ny z is the total number of zones attached to node 0, N, ~,z the total number of nodes associated
with zone Z, and z§ — xj ,,, . are the vector components of the distances between node 0 and nearest
neighbor zone centers identified by the index m.
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